skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dumra, Simran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carbon dots (CDots) are classically defined as small carbon nanoparticles with effective surface passivation, which, in the classical synthesis, has been accomplished by surface organic functionalization. CDot-like nanostructures could also be produced by the thermal carbonization processing of selected organic precursors, in which the non-molecular nanocarbons resulting from the carbonization are embedded in the remaining organic species, which may provide the passivation function for the nanocarbons. In this work, a mixture of oligomeric polyethylenimine and citric acid in the solid state was used for efficient thermal carbonization processing with microwave irradiation under various conditions to produce dot samples with different nanocarbon content. The samples were characterized in terms of their structural and morphological features regarding their similarity or equivalency to those of the classical CDots, along with their significant divergences. Also evaluated were their optical spectroscopic properties and their photoinduced antimicrobial activity against selected bacterial species. The advantages and disadvantages of the thermal carbonization processing method and the resulting dot samples with various features and properties mimicking those of classically synthesized CDots are discussed. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026